Evaluation of Methods for Inoculating Dry Powder Foods with Salmonella enterica, Enterococcus faecium, or Cronobacter sakazakii

Author:

WIERTZEMA JUSTIN R.1,BORCHARDT CHRISTIAN1,BECKSTROM ANNA K.1,DEV KAMAL1,CHEN PAUL2,CHEN CHI1,VICKERS ZATA1,FEIRTAG JOELLEN1,LEE LAURENCE3,RUAN ROGER12,BAUMLER DAVID J.145

Affiliation:

1. Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota 55108

2. Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota 55108

3. Biotechnology Institute, University of Minnesota, St. Paul, Minnesota 55108

4. Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108

5. LZL Engineering, Inc., 760 Crestview Lane, Owatonna, Minnesota 55060, USA

Abstract

ABSTRACT Salmonella and Cronobacter are two bacteria of concern in powdered food ingredients with low water activity, due to their ability to remain viable for long periods of time. There is great interest in studying the survival of these bacteria in powdered foods, but discrepancies have been reported between broth-grown and lawn-grown bacterial cells and their thermal resistance and desiccation tolerance once inoculated onto powdered foods. The purpose of this study was to evaluate three different powdered food inoculation methods, two broth-grown and one lawn-grown. To evaluate these methods on three types of powdered food matrices, Salmonella enterica serovar Typhimurium LT2 (ATCC 700720), Salmonella surrogate Enterococcus faecium (NRRL B-2354), and Cronobacter sakazakii (ATCC 29544) were inoculated onto nonfat dry milk powder, organic soy flour, and all-purpose flour using one of the three previously developed inoculation methods. In the first broth-grown method, labeled broth-grown pelletized inoculation, a bacterial cell pellet was added to powdered foods directly and mixed with a sterile wooden stick. The second broth-grown method, labeled broth-grown spray inoculation, used a chromatography reagent sprayer to spray the bacterial cell suspension onto the powdered foods. The third inoculation method, lawn-grown liquid inoculation, made use of a spot inoculation and a stomacher to incorporate each bacterium into the powdered foods. Results indicated that the method of inoculation of each powder impacted repeatability and bacteria survivability postequilibration (4 to 6 days). Broth-grown spray inoculation, regardless of the powder and bacterium, resulted in the highest log reduction, with an average ∼1-log CFU/g reduction following equilibration. Broth-grown pelletized inoculation resulted in the second-highest log reduction (∼0.79 log CFU/g), and finally, lawn-grown liquid inoculation was the most stable inoculation method of the three, with ∼0.52-log CFU/g reduction. Overall, the results from this inoculation study demonstrate that inoculation methodologies impact the desiccation tolerance and homogeneity of C. sakazakii, E. faecium, and Salmonella Typhimurium LT2.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3