Synergistic Antimicrobial Combinations Inhibit and Inactivate Listeria monocytogenes in Neutral and Acidic Broth Systems

Author:

Kozak Sarah M.1,Margison Kyle M.2,D'amico Dennis J.1

Affiliation:

1. Department of Animal Science, 302B Agricultural Biotechnology Laboratory, 1390 Storrs Road, U-4163, University of Connecticut, Storrs, Connecticut 06269; and

2. School of Pharmacy, 69 North Eagleville Road, University of Connecticut, Storrs, Connecticut 06269, USA

Abstract

ABSTRACT The use of antimicrobial compounds can be an effective approach to control Listeria monocytogenes in ready-to-eat foods, but it can also be limited by cost, restrictions on concentrations in foods, and potential changes to organoleptic properties. Combinatorial approaches that produce additive or synergistic effects allow for reductions in individual antimicrobial concentrations while achieving the same level of control. The present study determined the MIC and MBC of an antimicrobial compound when used alone or in binary combinations against L. monocytogenes in growth media adjusted to pH values 7.4 and 5.5 and characterized interactions as synergistic, additive, or antagonistic. Inhibitory and bactericidal concentrations were defined as changes in L. monocytogenes counts of ≤1.0 or ≥3.0 log CFU/mL compared with the starting inoculum, respectively. Individually, lauric arginate (LAE), hydrogen peroxide (HP), and ɛ-polylysine (EPL) inhibited L. monocytogenes growth at the lowest concentrations when applied alone in broth adjusted to pH 7.4. Similarly, LAE, EPL, and HP had the lowest MBCs in broth adjusted to both pH levels. The inhibitory efficacy of both caprylic acid and sodium caprylate (SC) increased at the lower pH, with reductions in MICs of >98%. In total, 35 and 19 additive or synergistic inhibitory and bactericidal combinations were identified at pH values 7.4 and 5.5, respectively. Combinations of acidified calcium sulfate with lactic acid (ACSL) and SC were among the most synergistic inhibitory groupings at both pH levels, whereas EPL+LAE were the most effective bactericides at pH 7.4. Combinations of SC with EPL or ACSL were also among the most effective bactericides at pH 5.5. These data serve as a foundation for developing more effective antimicrobial approaches for the control of L. monocytogenes in foods with different pH levels.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3