Transfer of Persistent Listeria monocytogenes Contamination between Food-Processing Plants Associated with a Dicing Machine

Author:

LUNDÉN JANNE M.1,AUTIO TIINA J.1,KORKEALA HANNU J.1

Affiliation:

1. Department of Food and Environmental Hygiene, Faculty of Veterinary Medicine, P.O. Box 57, FIN-00014, University of Helsinki, Helsinki, Finland

Abstract

The possibility of the transfer of persistent Listeria monocytogenes contamination from one plant to another with a dicing machine was evaluated, and possible reasons for persistent contamination were analyzed. A dicing machine that diced cooked meat products was transferred from plant A to plant B and then to plant C. After the transfer of the dicing machine, L. monocytogenes PFGE type I, originally found in plant A, was soon also found in plants B and C. This L. monocytogenes PFGE type I caused persistent contamination of the dicing lines in plants B and C. The persistent L. monocytogenes strain and three nonpersistent L. monocytogenes strains found in the dicing line of plant C were tested for adherence to stainless steel surfaces and minimal inhibitory concentrations of a quaternary ammonium compound and sodium hypochlorite, disinfectants widely used in the dicing lines. The persistent strain showed significantly higher adherence to stainless steel surfaces than did the nonpersistent strains. The minimal inhibitory concentrations of sodium hypochlorite were similar for all strains, and the minimal inhibitory concentrations of the quaternary ammonium compound for three of the L. monocytogenes PFGE types, including the persistent PFGE type, were high. All persistent L. monocytogenes PFGE type I isolates were found in an area with high hygienic standards, with the dicing machine being the first point of contamination. These observations show that the dicing machine sustained the contamination and suggest that the dicing machine transferred the persistent L. monocytogenes PFGE type from one plant to another.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 136 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3