Influence of Curli Expression by Escherichia coli O157:H7 on the Cell's Overall Hydrophobicity, Charge, and Ability To Attach to Lettuce

Author:

BOYER RENEE R.1,SUMNER SUSAN S.1,WILLIAMS ROBERT C.1,PIERSON MERLE D.1,POPHAM DAVID L.2,KNIEL KALMIA E.3

Affiliation:

1. 1Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

2. 2Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

3. 3Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716, USA

Abstract

Curli fibers are produced by some Escherichia coli cells in response to environmental stimuli. These extracellular proteins enhance the cell's ability to form biofilms on various abiotic surfaces. E. coli O157:H7 cells readily attach to a variety of fruit and vegetable surfaces. It is not known whether the expression of curli influences the cell's ability to attach to produce surfaces. In this study, the effect of curli expression on the cell's overall hydrophobicity, charge, and ability to attach to cut and whole iceberg lettuce surfaces was examined. All strains, regardless of curli expression, attached preferentially to the cut edges of lettuce (P < 0.05). The curli-producing cells of E. coli O157:H7 strain E0018 attached in significantly greater numbers to both cut and whole lettuce pieces than did the non–curli-producing E0018 cells (P < 0.05); however, no significant attachment differences were observed between the curli-producing and non–curli-producing cells of E. coli O157:H7 strains 43894 and 43895. All curli-producing E. coli O157:H7 strains were significantly more hydrophobic (P < 0.01); however, no association between the cells' hydrophobic characteristics and lettuce attachment was observed. Overall surface charge of the cells did not differ among strains or curli phenotypes. Results indicate that overall hydrophobicity and cell charge in E. coli O157:H7 strains do not influence attachment to iceberg lettuce surfaces. The presence of curli may not have any influence on attachment of E. coli O157:H7 cells to produce items. Additional factors may influence the attachment of E. coli O157:H7 to plant surfaces and should be further examined.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3