The effects of freezing-induced sublethally injury and recovery on adhesion of Escherichia coli O157:H7

Author:

Zhai Yujun1,Zhang Ru1,Chen Kewei1,Shi Hui1

Affiliation:

1. Southwest University

Abstract

Abstract Freezing as an effective approach for food storage is commonly used in food industry. Notably, Escherichia coli O157:H7 can survive in a sublethally injured state after freezing and recover under suitable conditions, which is a great threat. This research was to investigate changes and mechanism in adhesion of sublethally injured E. coli O157:H7 during freezing and recovery. Adhesion on stainless steel or lettuce surface showed an increase after 16 h-freezing with sublethal ratio of more than 99%. Adhesion recovered to untreated level in recovery on lettuce while didn’t recover on stainless steel. Motility decreased as freezing time increasing, reached minimum after 12 h-freezing and didn’t recover to untreated level under recovery conditions, which was determined by diameter of motility halo. Extracellular polymeric substances production and carbohydrate to protein ratio both reached minimum after 4 h-freezing and then increased. No significant change of LPS structural feature or gene expression was observed during injury and recovery. Besides, the expressions of flagella, pili and EPS related genes were all down-regulated during freezing while were up-regulated after recovery. The results revealed adhesion behavior of freezing-induced sublethally injured E. coli O157:H7, which provides theoretical basis to bacterial prevention.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3