Heat Shock Protein-Mediated Resistance to High Hydrostatic Pressure in Escherichia coli

Author:

Aertsen Abram1,Vanoirbeek Kristof1,De Spiegeleer Philipp1,Sermon Jan1,Hauben Kristel1,Farewell Anne2,Nyström Thomas2,Michiels Chris W.1

Affiliation:

1. Laboratory of Food Microbiology, Katholieke Universiteit Leuven, Leuven, Belgium

2. Department of Cell and Molecular Biology-Microbiology, Göteborg University, Göteborg, Sweden

Abstract

ABSTRACT A random library of Escherichia coli MG1655 genomic fragments fused to a promoterless green fluorescent protein (GFP) gene was constructed and screened by differential fluorescence induction for promoters that are induced after exposure to a sublethal high hydrostatic pressure stress. This screening yielded three promoters of genes belonging to the heat shock regulon ( dnaK , lon , clpPX ), suggesting a role for heat shock proteins in protection against, and/or repair of, damage caused by high pressure. Several further observations provide additional support for this hypothesis: (i) the expression of rpoH , encoding the heat shock-specific sigma factor σ 32 , was also induced by high pressure; (ii) heat shock rendered E. coli significantly more resistant to subsequent high-pressure inactivation, and this heat shock-induced pressure resistance followed the same time course as the induction of heat shock genes; (iii) basal expression levels of GFP from heat shock promoters, and expression of several heat shock proteins as determined by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins extracted from pulse-labeled cells, was increased in three previously isolated pressure-resistant mutants of E. coli compared to wild-type levels.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3