Escherichia coli O157 Diversity with Respect to Survival during Drying on Concrete

Author:

AVERY S. M.1,BUNCIC S.1

Affiliation:

1. Division of Food Animal Science, Department of Clinical Veterinary Science, University of Bristol, Bristol BS40 5DU, UK

Abstract

Shiga toxin (Stx)–producing Escherichia coli O157 isolates (n = 123) were divided into groups according to origin, genotype (pulsed-field gel electrophoresis [PFGE] type, or ribotype), type of Stx produced, or phage type (PT). The survival rate ([number of CFU after 24 h of drying/number of CFU before drying] × 100) for each isolate was determined in triplicate after drying on concrete for 24.0 h. The overall mean survival rate among the 123 E. coli O157 isolates studied was 22.9%, but there was a wide range of responses to drying on concrete, with a minimum of 1.2% and a maximum of 61.9% of the initial inocula being recovered after drying. Among the groups, those isolates that originated from cases of human disease were, on average, significantly more sensitive (P < 0.001) to drying (with a mean survival rate of 15.3%) than isolates from the other three sources (with mean survival rates of 27.7, 26.0, and 22.9% for meats, bovine or ovine feces, and bovine hides, respectively). When the isolates were grouped by genotype, three of the PFGE types were, on average, significantly more resistant to drying than two other PFGE types were, and similarly, significant differences in average resistance to drying between groups of E. coli O157 with different ribotypes were seen. There were no differences between the abilities of isolates producing different Stxs (Stx 1 or Stx 1 and Stx 2) to survive drying. E. coli O157 isolates of PT4, PT21/28, and PT32 survived drying on concrete better than groups of other PTs did. Since the E. coli O157 isolates had various abilities to survive drying on concrete, drying could contribute to a kind of E. coli O157 natural selection along the meat chain. This possibility may have significant meat safety implications if a range of E. coli O157 isolates are simultaneously exposed to drying at any point along the meat production chain. Those E. coli O157 isolates that are more able to survive drying could be more likely to pass farther along the meat chain and ultimately reach consumers.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3