Validation of Lactic Acid Bacteria, Lactic Acid, and Acidified Sodium Chlorite as Decontaminating Interventions To Control Escherichia coli O157:H7 and Salmonella Typhimurium DT 104 in Mechanically Tenderized and Brine-Enhanced (Nonintact) Beef at the Purveyor

Author:

ECHEVERRY ALEJANDRO1,BROOKS J. CHANCE1,MILLER MARKUS F.1,COLLINS JESSE A.1,LONERAGAN GUY H.1,BRASHEARS MINDY M.1

Affiliation:

1. Department of Animal and Food Sciences, Texas Tech University, Box 42141, Lubbock, Texas 79409, USA

Abstract

After three different outbreaks were linked to the consumption of nonintact meat products contaminated with Escherichia coli O157:H7, the U.S. Food Safety and Inspection Service published notice requiring establishments producing mechanically tenderized and moisture-enhanced beef products to reassess their respective hazard analysis and critical control point systems, due to potential risk to the consumers. The objective of this study was to validate the use of lactic acid bacteria (LAB), acidified sodium chlorite (ASC), and lactic acid (LA) sprays when applied under a simulated purveyor setting as effective interventions to control and reduce E. coli O157:H7 and Salmonella Typhimurium DT 104 in inoculated U.S. Department of Agriculture (USDA) Choice strip loins (longissimus lumborum muscles) pieces intended for either mechanical blade tenderization or injection enhancement with a brine solution after an aging period of 14 or 21 days at 4.4°C under vacuum. After the mechanical process, translocation of E. coli O157:H7 and Salmonella Typhimurium DT 104 from the surface into the internal muscles occurred at levels between 1.00 and 5.72 log CFU/g, compared with controls. LAB and LA reduced internal E. coli O157:H7 loads up to 3.0 log, while ASC reduced the pathogen 1.4 to 2.3 log more than the control (P < 0.05), respectively. Salmonella Typhimurium DT 104 was also reduced internally 1.3 to 2.8, 1.0 to 2.3, and 1.4 to 1.8 log after application of LAB, LA, and ASC, respectively. The application of antimicrobials by purveyors prior to mechanical tenderization or enhancement of steaks should increase the safety of these types of products.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3