Microbial Populations on Animal Hides and Beef Carcasses at Different Stages of Slaughter in Plants Employing Multiple-Sequential Interventions for Decontamination

Author:

BACON R. T.1,BELK K. E.1,SOFOS J. N.1,CLAYTON R. P.2,REAGAN J. O.3,SMITH G. C.1

Affiliation:

1. 1Center for Red Meat Safety, Department of Animal Sciences, Colorado State University, Ft. Collins, Colorado 80523-1171

2. 2SSI Food Service, Inc., Caldwell, Idaho 83606

3. 3National Cattlemen's Beef Association, Englewood, Colorado 80155, USA

Abstract

Multiple-sequential interventions were applied commercially to reduce beef carcass contamination in eight packing plants. The study evaluated microbial populations on animal hides and changes in carcass microbial populations at various stages in the slaughtering process. Sponge swab samples yielded mean (log CFU/100 cm2) total plate counts (TPC), total coliform counts (TCC), and Escherichia coli counts (ECC) on the exterior hide in the ranges of 8.2 to 12.5, 6.0 to 7.9, and 5.5 to 7.5, respectively, while corresponding contamination levels on carcass surfaces, after hide removal but before application of any decontamination intervention, were in the ranges of 6.1 to 9.1, 3.0 to 6.0, and 2.6 to 5.3, respectively. Following the slaughtering process and application of multiple-sequential decontamination interventions that included steam vacuuming, pre-evisceration carcass washing, pre-evisceration organic acid solution rinsing, hot water carcass washing, postevisceration final carcass washing, and postevisceration organic acid solution rinsing, mean TPC, TCC, and ECC on carcass surfaces were 3.8 to 7.1, 1.5 to 3.7, and 1.0 to 3.0, respectively, while corresponding populations following a 24 to 36 h chilling period were 2.3 to 5.3, 0.9 to 1.3, and 0.9, respectively. The results support the concept of using sequential decontamination processes in beef packing plants as a means of improving the microbiological quality of beef carcasses.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3