Characterization of Low-Molecular-Weight Antiyeast Metabolites Produced by a Food-Protective Lactobacillus-Propionibacterium Coculture

Author:

SCHWENNINGER SUSANNE MIESCHER1,LACROIX CHRISTOPHE1,TRUTTMANN STEFAN1,JANS CHRISTOPH1,SPÖRNDLI CÄCILIA1,BIGLER LAURENT2,MEILE LEO1

Affiliation:

1. 1Laboratory of Food Biotechnology, Institute of Food Science and Nutrition, ETH Zentrum, 8092 Zurich, Switzerland

2. 2Laboratory for Mass Spectrometry, Institute of Organic Chemistry, University of Zurich, 8057 Zurich, Switzerland

Abstract

We developed a pH-controlled batch fermentation process with separately immobilized cells of the protective coculture of Lactobacillus paracasei subsp. paracasei SM20 and Propionibacterium jensenii SM11 in supplemented whey permeate medium yielding cell-free supernatants with high antiyeast activity against Candida pulcherrima and Rhodotorula mucilaginosa. The antiyeast compounds were resistant to proteinase K and pronase E treatments and showed high heat resistance (121°C for 15 min). Diafiltration (1,000-Da cutoff) revealed that the inhibitory metabolites have low molecular weights. Partial purification of active compounds was achieved by a microplate bioassay controlled procedure with solid-phase extraction (C18) followed by (i) gel filtration chromatography or (ii) semipreparative reverse-phase high-performance liquid chromatography (C18). In addition to propionic, acetic, and lactic acids, 2-pyrrolidone-5-carboxylic acid, 3-phenyllactic acid, hydroxyphenyllactic acid, and succinic acid were identified by chromatography and mass spectrometry. Accurate quantifications revealed only low concentrations (up to 7 mM) of 2-pyrrolidone-5-carboxylic acid, 3-phenyllactic acid, and hydroxyphenyllactic acid produced during fermentation in contrast to relatively high MICs (50 to more than 500 mM) determined at different pH values (4.0, 5.0, and 6.0). Succinic acid was present at higher concentrations (29 mM) in cell-free supernatants but with comparable high MICs (200 to more than 500 mM and pH 4.0, 5.0, and 6.0). Although none of these compounds was the main substance responsible per se for suppression of yeast growth, our study revealed a complex antiyeast mechanism with putative synergistic effects between several low-molecular-weight compounds.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3