Decontamination of Lettuce Using Acidic Electrolyzed Water

Author:

KOSEKI SHIGENOBU1,YOSHIDA KYOICHIRO2,ISOBE SEIICHIRO3,ITOH KAZUHIKO1

Affiliation:

1. 1Graduate School of Agricultural Science, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan

2. 2Graduate School of Fishers Science, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan

3. 3National Food Research Institute, 2-1-2 Kannondai, Tsukuba 305-8642, Japan

Abstract

The disinfectant effect of acidic electrolyzed water (AcEW), ozonated water, and sodium hypochlorite (NaOCl) solution on lettuce was examined. AcEW (pH 2.6; oxidation reduction potential, 1140 mV; 30 ppm of available chlorine) and NaOCl solution (150 ppm of available chlorine) reduced viable aerobes in lettuce by 2 log CFU/g within 10 min. For lettuce washed in alkaline electrolyzed water (AlEW) for 1 min and then disinfected in AcEW for 1 min, viable aerobes were reduced by 2 log CFU/g. On the other hand, ozonated water containing 5 ppm of ozone reduced viable aerobes in lettuce 1.5 log CFU/g within 10 min. It was discovered that AcEW showed a higher disinfectant effect than did ozonated water significantly at P < 0.05. It was confirmed by swabbing test that AcEW, ozonated water, and NaOCl solution removed aerobic bacteria, coliform bacteria, molds, and yeasts on the surface of lettuce. Therefore, residual microorganisms after the decontamination of lettuce were either in the inside of the cellular tissue, such as the stomata, or making biofilm on the surface of lettuce. Biofilms were observed by a scanning electron microscope on the surface of the lettuce treated with AcEW. Moreover, it was shown that the spores of bacteria on the surface were not removed by any treatment in this study. However, it was also observed that the surface structure of lettuce was not damaged by any treatment in this study. Thus, the use of AcEW for decontamination of fresh lettuce was suggested to be an effective means of controlling microorganisms.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3