Affiliation:
1. 1Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
2. 2The Gastroenteric Disease Center (GDC), The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Abstract
Fourier transform–infrared spectroscopy, in conjunction with artificial neural networks, has been used for identification and classification of selected foodborne pathogens. Five bacterial species (Enterococcus faecium, Salmonella Enteritidis, Bacillus cereus, Yersinia enterocolitica, Shigella boydii) and five Escherichia coli strains (O103, O55, O121, O30, O26) suspended in phosphate-buffered saline were enumerated to provide seven different concentrations ranging from 109 to 103 CFU/ml. The trained artificial neural networks were then validated with an independent subset of samples and compared with the traditional plate count method. It was found that the concentration-based classification of the species was 100% correct and the strain-based classification was 90 to 100% accurate.
Publisher
International Association for Food Protection
Subject
Microbiology,Food Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献