Effect of the Local Microenvironment on Survival and Thermal Inactivation of Salmonella in Low- and Intermediate-Moisture Multi-Ingredient Foods

Author:

LI HAIPING1,FU XIAOWEN2,BIMA YIGE2,KOONTZ JOHN1,MEGALIS CHRISTINA1,YANG FEI2,FLEISCHMAN GREGORY1,TORTORELLO MARY LOU1

Affiliation:

1. 1U.S. Food and Drug Administration, Division of Food Processing Science and Technology, 6502 South Archer Road, Bedford Park, Illinois 60501

2. 2Institute for Food Safety and Health, Illinois Institute of Technology, 6502 South Archer Road, Bedford Park, Illinois 60501, USA

Abstract

Multi-ingredient foods having low- or intermediate-moisture characteristics may pose a special challenge to process design and validation. Ingredients of these foods can create local microenvironments that may have a distinct impact on pathogen survival and processing requirements. In this study, two model systems, each consisting of 80% commercial peanut butter (P) and 20% nonfat dry milk powder (M), were formulated to be identical in composition, but different in the source of the Salmonella contamination as originating in either the ingredient P or M. Immediately after inoculation, Salmonella showed a 2.0-log reduction when M was the contaminated ingredient compared with a 0.6-log reduction when P was the contaminated ingredient. This pattern of survival was consistent with the single-ingredient control containing only M (2.5-log reduction) or only P (0.7-log reduction), suggesting that the immediate proximity of cells is determined by the contaminated ingredient in the model system. After 5 weeks of storage, the survival rates of Salmonella in the two systems remained different, i.e. a 4- and 2-log reduction resulted in the system with M or P as the contaminated ingredient, respectively. Furthermore, thermal inactivation efficacies also differed significantly between the two systems. Fourier transform infrared spectroscopy demonstrated the nonhomogeneous distribution of water, lipid, and protein, indicating that varied local microenvironments were present and likely affected the behavior of the pathogen. The impact of the microenvironment on inactivation and survival of Salmonella was further confirmed in a butter cookie formulation in which Salmonella was inoculated via four different ingredients. This study shows that the local microenvironment in low- and intermediate-moisture foods affects Salmonella survival and thermal inactivation. The ingredient source of the contamination should be taken into account for process design and validation to ensure the safety of the product.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3