Heat Resistance of Salmonella weltevreden in Low-Moisture Environments

Author:

ARCHER JULIE1,JERVIS EMMA T.1,BIRD JON1,GAZE JOY E.1

Affiliation:

1. Department of Microbiology, Campden & Chorleywood Food Research Association, Chipping Campden, Glos, GL55 6LD, United Kingdom

Abstract

The heat resistance of Salmonella weltevreden inoculated into flour and heated in hot air was determined for (a) an initial water activity (aw) range of 0.20 to 0.60 prior to heating, (b) a range of storage relative humidities of 6.0 to 35.5% prior to heating, and (c) temperatures of 57 to 77°C. The death curves obtained were biphasic, demonstrating an initial rapid decline in the numbers of survivors (1.0- to 1.5-log reductions) during the first 5 to 10 min of heating for all the temperature-water activity combinations tested. Following this initial rapid decline in the number of cells, a linear survivor curve was obtained where inactivation occurred at a slower rate. The initial decline in survivors coincided with a rapid decrease in the water activity of all the samples tested. Irrespective of the initial water activity level in the samples prior to heating, the aw decreased to <0.2 during the first 5 to 10 min of heating. The D values obtained for these experimental parameters ranged from a D60–62 of 875 min at an initial aw of 0.4 to a D63–65 of 29 min at an initial aw of 0.5. The results demonstrated that, for any temperature, as the initial water activity of the sample prior to heating decreased, the heat resistance of the cells increased. The z values obtained from these data ranged from 15.2 to 53.9°C. The relative humidity during storage prior to heating did not appear to have a significant effect on the heat resistance of S. weltevreden in flour. These results demonstrate that the amount of available water in foods that are considered to be “dry” (i.e., with a water activity less than 0.60) will significantly influence the effectiveness of the heat processing of foods and, in addition to the temperature, the aw prior to heating is a critical controlling factor during these processes.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3