Temperature Effects on the Antimicrobial Efficacy of Condensed Smoke and Lauric Arginate against Listeria and Salmonella

Author:

LINGBECK JODY M.1,CORDERO PAOLA12,O'BRYAN CORLISS A.2,JOHNSON MICHAEL G.2,RICKE STEVEN C.123,CRANDALL PHILIP G.12

Affiliation:

1. 1Sea Star International LLC, 2138 East Revere Place, Fayetteville, Arkansas 72701

2. 2Department of Food Science and Center for Food Safety, University of Arkansas, Fayetteville, Arkansas 72704, USA

3. 3Department of Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas 72704, USA

Abstract

Condensed smoke or liquid smoke (LS) and lauric arginate (LAE) are antimicrobials used in food preservation. They have demonstrated abilities to reduce or inhibit pathogenic and spoilage organisms. Few studies, however, have reported on the effectiveness of LS or LAE over the range of temperatures typically encountered in food marketing channels. Therefore, the effects of temperature on the antimicrobial properties of two commercial LS fractions, an LS derived from pecan shells, and LAE against two common foodborne pathogens, Listeria and Salmonella, were investigated. The MICs of the three LS samples and LAE were measured at 4, 10, and 37°C for Listeria monocytogenes strains 2045 (Scott A, serotype 4b) and 10403S (serotype 1/2a) and two strains of Listeria innocua, a well-established surrogate, and at 10, 25, and 37°C for Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Heidelberg. The MICs for LS against Listeria ranged from 3 to 48% (vol/vol), with higher MICs seen with lower temperatures. The MICs for LS on Salmonella ranged from 3 to 24%. Values for LAE ranged between 0.004 and 0.07% for both pathogens, and like LS, higher MICs were always associated with lower incubation temperatures. Understanding how storage temperature affects the efficacy of antimicrobials is an important factor that can contribute to lowering the hurdles of use levels and costs of antimicrobials and ultimately improve food safety for the consumer.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3