Parametric Distributions of Underdiagnosis Parameters Used To Estimate Annual Burden of Illness for Five Foodborne Pathogens

Author:

EBEL ERIC D.1,WILLIAMS MICHAEL S.1,SCHLOSSER WAYNE D.1

Affiliation:

1. U.S. Department of Agriculture, Food Safety Inspection Service, Risk Assessment Division, Office of Public Health Science, 2150 Centre Avenue, Building D, Fort Collins, Colorado 80526, USA

Abstract

Estimates of the burden of bacterial foodborne illness are used in applications ranging from determining economic losses due to a particular pathogenic organism to improving our understanding of the effects of antimicrobial resistance or changes in pathogen serotype. Estimates of the total number of illnesses can be derived by multiplying the number of observed illnesses, as reported by a specific active surveillance system, by an underdiagnosis factor that describes the relationship between observed and unobserved cases. The underdiagnosis factor can be a fixed value, but recent research efforts have focused on characterizing the inherent uncertainty in the surveillance system with a computer simulation. Although the inclusion of uncertainty is beneficial, re-creating the simulation results for every application can be burdensome. An alternative approach is to describe the underdiagnosis factor and its uncertainty with a parametric distribution. The use of such a distribution simplifies analyses by providing a closed-form definition of the underdiagnosis factor and allows this factor to be easily incorporated into Bayesian models. In this article, we propose and estimate parametric distributions for the underdiagnosis multipliers developed for the FoodNet surveillance systems in the United States. Distributions are provided for the five foodborne pathogens deemed most relevant to meat and poultry.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3