PCR–Restriction Fragment Length Polymorphism and Pulsed-Field Gel Electrophoresis Characterization of Listeria monocytogenes Isolates from Ready-to-Eat Foods, the Food Processing Environment, and Clinical Samples in South Africa

Author:

RIP DIANE1,GOUWS PIETER A.1

Affiliation:

1. Food Microbiology Research Group, Department of Biotechnology, University of the Western Cape, Bellville, South Africa

Abstract

ABSTRACT Listeria monocytogenes is a ubiquitous, intracellular foodborne pathogen that is responsible for invasive listeriosis. The ability of L. monocytogenes to cause disease has some correlation with the serotypes of a specific lineage group, making the identification of lineage groups important for epidemiological analysis. The development of typing methods to link the strains of L. monocytogenes to an outbreak of listeriosis would help minimize the spread of the disease. The aim of this study was to design a PCR–restriction fragment length polymorphism (RFLP) method to differentiate between the lineage groups of L. monocytogenes. PCR-amplified fragments of the hly gene for 12 serotypes of L. monocytogenes were sequenced, aligned, and analyzed with the BioEdit program, and single nucleotide polymorphisms (SNPs) within regions of this gene were identified. Because of the difficulty in acquiring a serotype 4ab reference strain, this serotype was not included in this study. We tested the specificity and accuracy of the PCR-RFLP method on these L. monocytogenes reference strains and validated the method with 172 L. monocytogenes strains recovered from humans, food, and the food processing environment in 2000 to 2002 and 2008 to 2010 from regions within South Africa. PCR-RFLP analysis applied in this study placed L. monocytogenes serotypes into one of three lineage groups based on the sequence differences and SNPs within each lineage group. The SNPs were conserved in a region where RFLP analysis could be applied for a distinction between L. monocytogenes lineage groups. HIGHLIGHTS

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3