Effect of Exposure Time and Organic Matter on Efficacy of Antimicrobial Compounds against Shiga Toxin–Producing Escherichia coli and Salmonella

Author:

KALCHAYANAND NORASAK1,KOOHMARAIE MOHAMMAD2,WHEELER TOMMY L.1

Affiliation:

1. 1U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, P.O. Box 166, State Spur 18D, Clay Center, Nebraska 68933-0166

2. 2IEH Laboratories and Consulting Group, 15300 Bothell Way N.E., Lake Forest Park, Washington 98155, USA

Abstract

ABSTRACT Several antimicrobial compounds are in commercial meat processing plants for pathogen control on beef carcasses. However, the efficacy of the method used is influenced by a number of factors, such as spray pressure, temperature, type of chemical and concentration, exposure time, method of application, equipment design, and the stage in the process that the method is applied. The objective of this study was to evaluate effectiveness of time of exposure of various antimicrobial compounds against nine strains of Shiga toxin–producing Escherichia coli (STEC) and four strains of Salmonella in aqueous antimicrobial solutions with and without organic matter. Non-O157 STEC, STEC O157:H7, and Salmonella were exposed to the following aqueous antimicrobial solutions with or without beef purge for 15, 30, 60, 120, 300, 600, and 1,800 s: (i) 2.5% lactic acid, (ii) 4.0% lactic acid, (iii) 2.5% Beefxide, (iv) 1% Aftec 3000, (v) 200 ppm of peracetic acid, (vi) 300 ppm of hypobromous acid, and (vii) water as a control. In general, increasing exposure time to antimicrobial compounds significantly (P ≤ 0.05) increased the effectiveness against pathogens tested. In aqueous antimicrobial solutions without organic matter, both peracetic acid and hypobromous acid were the most effective in inactivating populations of STEC and Salmonella, providing at least 5.0-log reductions with exposure for 15 s. However, in antimicrobials containing organic matter, 4.0% lactic acid was the most effective compound in reducing levels of STEC and Salmonella, providing 2- to 3-log reductions with exposure for 15 s. The results of this study indicated that organic matter and exposure time influenced the efficacy of antimicrobial compounds against pathogens, especially with oxidizer compounds. These factors should be considered when choosing an antimicrobial compound for an intervention.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3