Effective Disinfection of Rough Rice Using Infrared Radiation Heating

Author:

WANG BEI12,KHIR RAGAB23,PAN ZHONGLI24,EL-MASHAD HAMED2,ATUNGULU GRIFFITHS G.2,MA HAILE1,McHUGH TARA H4,QU WENJUAN1,WU BENGANG1

Affiliation:

1. 1School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, People's Republic of China

2. 2Department of Biological and Agricultural Engineering, University of California, One Shields Avenue, Davis, California 95616, USA

3. 3Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt

4. 4Healthy Processed Foods Research Unit, Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, California 94710, USA

Abstract

The objective of this study was to investigate the effect of infrared (IR) heating and tempering treatments on disinfection of Aspergillus flavus in freshly harvested rough rice and storage rice. Rice samples with initial moisture contents (IMCs) of 14.1 to 27.0% (wet basis) were infected with A. flavus spores before the tests. The infected samples were heated by IR radiation to 60°C in less than 1 min, and then samples were tempered at 60°C for 5, 10, 20, 30, 60, or 120 min. High heating rates and corresponding high levels of moisture removal were achieved using IR heating. The highest total moisture removal was 5.3% for the fresh rice with an IMC of 27.0% after IR heating and then 120 min of tempering. IR heating followed by tempering for 120 min resulted in 2.5- and 8.3-log reductions of A. flavus spores in rough rice with the lowest and highest IMCs, respectively. To study the effect on disinfection of rewetting dried storage rice, the surface of the dry rice was rewetted to achieve IMCs of 14.7 to 19.4% (wet basis). The rewetting process for the dry rice had a significant effect on disinfection. IR heating followed by tempering for 60 min resulted in 7.2-log reductions in A. flavus on rewetted rough rice. The log-linear plus tail model was applied to estimate the tempering time needed to achieve a 5-log reduction of A. flavus in rice of different IMCs. At least 30 and 20 min of tempering were needed for fresh rice and rewetted rice, respectively, with the highest IMCs. The recommended conditions of simultaneous disinfection and drying for fresh rice was IR heating to 60°C followed by tempering for 120 min and natural cooling, resulting in a final MC of 16.5 to 22.0%, depending on the IMC. For the rewetted dry rice with an IMC of 19.4%, the recommended condition for disinfection and drying involved only 20 min of tempering. The final MC of the sample was 13.8%, which is a safe MC for storage rice.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3