Affiliation:
1. Department of Food Science and Human Nutrition, Washington State University, Pullman, Washington 99164–6376, USA
Abstract
Aqueous solutions of sodium hypochlorite or hypochlorous acid are typically used to sanitize fresh fruits and vegetables. However, pathogenic organisms occasionally survive aqueous sanitization in sufficient numbers to cause disease outbreaks. Chlorine dioxide (ClO2) gas generated by a dry chemical sachet was tested against foodborne pathogens on lettuce leaves. Lettuce leaves were inoculated with cocktail of three strains each of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium and treated with ClO2 gas for 30 min, 1 h, and 3 h in a model gas cabinet at room temperature (22 ± 2°C). After treatment, surviving cells, including injured cells, were enumerated on appropriate selective agar or using the overlay agar method, respectively. Total ClO2 generated by the gas packs was 4.3, 6.7, and 8.7 mg after 30 min, 1 h, and 3 h of treatment, respectively. Inoculated lettuce leaves exposed to ClO2 gas for 30 min experienced a 3.4-log reduction in E. coli, a 4.3-log reduction in Salmonella Typhimurium, and a 5.0-log reduction in L. monocytogenes when compared with the control. After 1 h, the three pathogens were reduced in number of CFU by 4.4, 5.3, and 5.2 log, respectively. After 3 h, the reductions were 6.9, 5.4, and 5.4 log, respectively. A similar pattern emerged when injured cells were enumerated. The ClO2 gas sachet was effective at killing pathogens on lettuce without deteriorating visual quality. Therefore, this product can be used during storage and transport of lettuce to improve its microbial safety.
Publisher
International Association for Food Protection
Subject
Microbiology,Food Science
Cited by
109 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献