Evidence of a Nonorthogonal X-line in Guide-field Magnetic Reconnection

Author:

Pathak NehaORCID,Ergun R. E.ORCID,Qi Y.ORCID,Schwartz S. J.,Vo T.ORCID,Usanova M. E.ORCID,Hesse M.,Phan T. D.ORCID,Drake J. F.ORCID,Eriksson S.ORCID,Ahmadi N.,Chasapis A.ORCID,Wilder F. D.,Stawarz J. E.ORCID,Burch J. L.ORCID,Genestreti K. J.,Torbert R. B.ORCID,Nakamura R.ORCID

Abstract

Abstract We present observations that suggest the X-line of guide-field magnetic reconnection is not necessarily orthogonal to the plane in which magnetic reconnection is occurring. The plane of magnetic reconnection is often referred to as the L–N plane, where L is the direction of the reversing and reconnecting magnetic field and N is normal to the current sheet. The X-line is often assumed to be orthogonal to the L–N plane (defined as the M-direction) in the majority of theoretical studies and numerical simulations. The four-satellite Magnetospheric Multiscale (MMS) mission, however, observes a guide-field magnetic reconnection event in Earth’s magnetotail in which the X-line may be oblique to the L–N plane. This finding is somewhat opportune as two of the MMS satellites at the same N location report nearly identical observations with no significant time delays in the electron diffusion region (EDR) even though they have substantial separation in L. A minimum directional derivative analysis suggests that the X-line is between 40° and 60° from M, adding support that the X-line is oblique. Furthermore, the measured ion velocity is inconsistent with the apparent motion of the MMS spacecraft in the L-direction through the EDR, which can be resolved if one assumes a shear in the L–N plane and motion in the M-direction. A nonorthogonal X-line, if somewhat common, would call for revisiting theory and simulations of guide-field magnetic reconnection, reexamination of how the reconnection electric field is supported in the EDR, and reconsidering the large-scale geometry of the X-line.

Funder

NASA ∣ NASA Headquarters

Royal Society

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3