The Nonorthogonal X-line in a Small Guide-field Reconnection Event in the Magnetotail

Author:

Qi YiORCID,Ergun RobertORCID,Pathak NehaORCID,Li Tak ChuORCID,Eriksson StefanORCID,Chasapis AlexandrosORCID,Schwartz Steven J,Ahmadi Narges,Vo TienORCID,Newman DavidORCID,Usanova MariaORCID,Wilder Frederick D,Shuster Jason

Abstract

Abstract Magnetic reconnection is a fundamental plasma process that has been studied with analytical theory, numerical simulations, in situ observations, and laboratory experiments for decades. The models that have been established to describe magnetic reconnection often assume a reconnection plane normal to the current sheet in which an antiparallel magnetic field annihilates. The annihilation points, also known as the X-points, form an x-line, which is believed to be perpendicular to the reconnection plane. Recently, a new study using Magnetospheric Multiscale mission observations has challenged our understanding of magnetic reconnection by providing evidence that the x-line is not necessarily orthogonal to the reconnection plane. In this study we report a second nonorthogonal x-line event with similar features as that in the previous case study, supporting that the sheared x-line phenomenon is not an aberrant event. We employ a detailed directional derivative analysis to identify the x-line direction and show that the in-plane reconnection characteristics are well maintained even with a nonorthogonal x-line. In addition, we find the x-line tends to follow the magnetic field on one side of the current sheet, which suggests an asymmetry across the current sheet. We discuss the possibility that the nonorthogonal x-line arises from an interplay between the two aspects of reconnection: the macroscopic magnetic field topology and microscopic particle kinetics.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3