The Effect of Interior Heat Flux on the Atmospheric Circulation of Hot and Ultra-hot Jupiters

Author:

Komacek Thaddeus D.ORCID,Gao PeterORCID,Thorngren Daniel P.ORCID,May Erin M.ORCID,Tan XianyuORCID

Abstract

Abstract Many hot and ultra-hot Jupiters have inflated radii, implying that their interiors retain significant entropy from formation. These hot interiors lead to an enhanced internal heat flux that impinges upon the atmosphere from below. In this work, we study the effect of this hot interior on the atmospheric circulation and thermal structure of hot and ultra-hot Jupiters. To do so, we incorporate the population-level predictions from evolutionary models of hot and ultra-hot Jupiters as input for a suite of general circulation models (GCMs) of their atmospheric circulation with varying semimajor axis and surface gravity. We conduct simulations with and without a hot interior, and find that there are significant local differences in temperature of up to hundreds of Kelvin and in wind speeds of hundreds of meters per second or more across the observable atmosphere. These differences persist throughout the parameter regime studied, and are dependent on surface gravity through the impact on photosphere pressure. These results imply that the internal evolution and atmospheric thermal structure and dynamics of hot and ultra-hot Jupiters are coupled. As a result, a joint approach including both evolutionary models and GCMs may be required to make robust predictions for the atmospheric circulation of hot and ultra-hot Jupiters.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3