Unusual Hard X-Ray Flares Caught in NICER Monitoring of the Binary Supermassive Black Hole Candidate AT2019cuk/Tick Tock/SDSS J1430+2303

Author:

Masterson MeganORCID,Kara ErinORCID,Pasham Dheeraj R.ORCID,D’Orazio Daniel J.ORCID,Walton Dominic J.ORCID,Fabian Andrew C.ORCID,Lucchini MatteoORCID,Remillard Ronald A.ORCID,Arzoumanian Zaven,Burkhonov OtabekORCID,Choi HyeonhoORCID,Ehgamberdiev Shuhrat A.ORCID,Ferrara Elizabeth C.ORCID,Guolo MuryelORCID,Im MyungshinORCID,Kim YonggiORCID,Mirzaqulov Davron O.ORCID,Paek Gregory S. H.ORCID,Sung Hyun-IlORCID,Yoon Joh-Na

Abstract

Abstract The nuclear transient AT2019cuk/Tick Tock/SDSS J1430+2303 has been suggested to harbor a supermassive black hole (SMBH) binary near coalescence. We report results from high-cadence NICER X-ray monitoring with multiple visits per day from 2022 January to August, as well as continued optical monitoring during the same time period. We find no evidence of periodic/quasiperiodic modulation in the X-ray, UV, or optical bands; however, we do observe exotic hard X-ray variability that is unusual for typical active galactic nuclei (AGN). The most striking feature of the NICER light curve is repetitive hard (2–4 keV) X-ray flares that result in distinctly harder X-ray spectra compared to the nonflaring data. In its nonflaring state, AT2019cuk looks like a relatively standard AGN, but it presents the first case of day-long, hard X-ray flares in a changing-look AGN. We consider a few different models for the driving mechanism of these hard X-ray flares, including (1) corona/jet variability driven by increased magnetic activity, (2) variable obscuration, and (3) self-lensing from the potential secondary SMBH. We prefer the variable corona model, as the obscuration model requires rather contrived timescales and the self-lensing model is difficult to reconcile with a lack of clear periodicity in the flares. These findings illustrate how important high-cadence X-ray monitoring is to our understanding of the rapid variability of the X-ray corona and necessitate further high-cadence, multiwavelength monitoring of changing-look AGN like AT2019cuk to probe the corona-jet connection.

Funder

National Aeronautics and Space Administration

EC ∣ Horizon Europe ∣ Excellent Science ∣ HORIZON EUROPE Marie Sklodowska-Curie Actions

National Research Foundation of Korea

Korea Astronomy and Space Science Institute

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3