Panic at the ISCO: Time-varying Double-peaked Broad Lines from Evolving Accretion Disks Are Common among Optically Variable AGNs

Author:

Ward CharlotteORCID,Gezari SuviORCID,Nugent PeterORCID,Kerr MatthewORCID,Eracleous MichaelORCID,Frederick SaraORCID,Hammerstein EricaORCID,Graham Matthew J.ORCID,van Velzen SjoertORCID,Kasliwal Mansi M.ORCID,Laher Russ R.ORCID,Masci Frank J.ORCID,Purdum JosiahORCID,Racine BenjaminORCID,Smith RogerORCID

Abstract

Abstract About 3%–10% of Type I active galactic nuclei (AGNs) have double-peaked broad Balmer lines in their optical spectra originating from the motion of gas in their accretion disk. Double-peaked profiles arise not only in AGNs, but occasionally appear during optical flares from tidal disruption events and changing-state AGNs. In this paper, we identify 250 double-peaked emitters (DPEs) among a parent sample of optically variable broad-line AGNs in the Zwicky Transient Facility (ZTF) survey, corresponding to a DPE fraction of 19%. We model spectra of the broad Hα emission-line regions and provide a catalog of the fitted accretion disk properties for the 250 DPEs. Analysis of power spectra derived from the 5 yr ZTF light curves finds that DPE light curves have similar amplitudes and power-law indices to other broad-line AGNs. Follow-up spectroscopy of 12 DPEs reveals that ∼50% display significant changes in the relative strengths of their red and blue peaks over long 10–20 yr timescales, indicating that broad-line profile changes arising from spiral arm or hotspot rotation are common among optically variable DPEs. Analysis of the accretion disk parameters derived from spectroscopic modeling provides evidence that DPEs are not in a special accretion state, but are simply normal broad-line AGNs viewed under the right conditions for the accretion disk to be easily visible. We include inspiraling supermassive black hole binary candidate SDSSJ1430+2303 in our analysis, and discuss how its photometric and spectroscopic variability is consistent with the disk-emitting AGN population in the ZTF survey.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3