Large Ion-neutral Drift Velocities and Plasma Heating in Partially Ionized Coronal Rain Blobs

Author:

Martínez-Gómez DavidORCID,Oliver RamónORCID,Khomenko ElenaORCID,Collados ManuelORCID

Abstract

Abstract In this paper we present a numerical study of the dynamics of partially ionized coronal rain blobs. We use a two-fluid model to perform a high-resolution 2D simulation that takes into account the collisional interaction between the charged and neutral particles contained in the plasma. We follow the evolution of a cold plasma condensation as it falls through an isothermal vertically stratified atmosphere that represents the much hotter and lighter solar corona. We study the consequences of the different degrees of collisional coupling that are present in the system. On the one hand, we find that at the dense core of the blob there is a very strong coupling and the charged and neutral components of the plasma behave as a single fluid, with negligible drift velocities (of a few cm s−1). On the other hand, at the edges of the blob the coupling is much weaker and larger drift velocities (of the order of 1 km s−1) appear. In addition, frictional heating causes large increases of temperature at the transition layers between the blob and the corona. For the first time we show that such large drift velocities and temperature enhancements can develop as a consequence of ion-neutral decoupling associated to coronal rain dynamics. This can lead to enhanced emission coming from the plasma at the coronal rain-corona boundary, which possesses transition region temperature.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Maclaurin spheroid in disguise: New figures of equilibrium with external magnetic support;Physical Review D;2024-09-10

2. Radiative loss and ion-neutral collisional effects in astrophysical plasmas;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-04-25

3. Mixing, heating and ion-neutral decoupling induced by Rayleigh–Taylor instability in prominence-corona transition regions;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-04-25

4. Study of Two-Fluid Effects in Weakly Ionized Plasma Under Electromagnetic Fields;AIAA Journal;2024-04

5. Two fluid dynamics in solar prominences;Astronomy & Astrophysics;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3