Abstract
Abstract
The abundances of mixing-sensitive elements including lithium, [C/N], and 12C/13C are known to change near the red giant branch bump. The explanation most often offered for these alterations is double diffusive thermohaline mixing in the stellar interior. In this analysis, we investigate the ability of thermohaline mixing to explain the observed timing of these chemical depletion events. Recent observational measurements of lithium and [C/N] show that the abundance of lithium decreases before the abundance of [C/N], whereas numerical simulations of the propagation of the thermohaline-mixing region computed with MESA show that the synthetic abundances drop simultaneously. We therefore conclude that thermohaline mixing alone cannot explain the distinct events of lithium depletion and [C/N] depletion, as the simultaneity predicted by simulations is not consistent with the observation of separate drops. We thus invite more sophisticated theoretical explanations for the observed temporal separation of these chemical depletion episodes as well as more extensive observational explorations across a range of masses and metallicities.
Funder
Hubble Postdoctoral Fellowship
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献