Generalized Transport Equation for the Autocovariance Function of the Density Field and Mass Invariant in Star-forming Clouds

Author:

Jaupart EtienneORCID,Chabrier GillesORCID

Abstract

Abstract In this Letter, we study the evolution of the autocovariance function of density-field fluctuations in star-forming clouds and thus of the correlation length l c (ρ) of these fluctuations, which can be identified as the average size of the most correlated structures within the cloud. Generalizing the transport equation derived by Chandrasekhar for static, homogeneous turbulence, we show that the mass contained within these structures is an invariant, i.e., that the average mass contained in the most correlated structures remains constant during the evolution of the cloud, whatever dominates the global dynamics (gravity or turbulence). We show that the growing impact of gravity on the turbulent flow yields an increase of the variance of the density fluctuations and thus a drastic decrease of the correlation length. Theoretical relations are successfully compared to numerical simulations. This picture brings a robust support to star formation paradigms where the mass concentration in turbulent star-forming clouds evolves from initially large, weakly correlated filamentary structures to smaller, denser, more correlated ones, and eventually to small, tightly correlated, prestellar cores. We stress that the present results rely on a pure statistical approach of density fluctuations and do not involve any specific condition for the formation of prestellar cores. Interestingly enough, we show that, under average conditions typical of Milky-Way molecular clouds, this invariant average mass is about a solar mass, providing an appealing explanation for the apparent universality of the IMF in such environments.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3