Statistical properties and correlation length in star-forming molecular clouds

Author:

Jaupart E.ORCID,Chabrier G.

Abstract

Observations of molecular clouds (MCs) show that their properties exhibit large fluctuations. The proper characterization of the general statistical behavior of these fluctuations, from a limited sample of observations or simulations, is of prime importance to understand the process of star formation. In this article, we use the ergodic theory for any random field of fluctuations, as commonly used in statistical physics, to derive rigorous statistical results. We outline how to evaluate the autocovariance function (ACF) and the characteristic correlation length of these fluctuations. We then apply this statistical approach to astrophysical systems characterized by a field of density fluctuations, notably star-forming clouds. When it is difficult to determine the correlation length from the empirical ACF, we show alternative ways to estimate the correlation length. Notably, we give a way to determine the correlation length of density fluctuations from the estimation of the variance of the volume and column-density fields. We show that the statistics of the column-density field is hampered by biases introduced by integration effects along the line of sight and we explain how to reduce these biases. The statistics of the probability density function (PDF) ergodic estimator also yields the derivation of the proper statistical error bars. We provide a method that can be used by observers and numerical simulation specialists to determine the latter. We show that they (i) cannot be derived from simple Poisson statistics and (ii) become increasingly large for increasing density contrasts, severely hampering the accuracy of the high end part of the PDF because of a sample size that is too small. As templates of various stages of star formation in MCs, we then examine the case of the Polaris and Orion B clouds in detail. We calculate, from the observations, the ACF and the correlation length in these clouds and show that the latter is on the order of ~1% of the size of the cloud. This justifies the assumption of statistical homogeneity when studying the PDF of star-forming clouds. These calculations provide a rigorous framework for the analysis of the global properties of star-forming clouds from limited statistical observations of their density and surface properties.

Funder

ENS de Lyon - CNRS

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Turbulence in compact to giant H ii regions;Monthly Notices of the Royal Astronomical Society;2023-06-05

2. The typical width of Herschel filaments;Astronomy & Astrophysics;2022-10-28

3. Statistical properties and correlation length in star-forming molecular clouds;Astronomy & Astrophysics;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3