The typical width of Herschel filaments

Author:

André P. J.ORCID,Palmeirim P.,Arzoumanian D.ORCID

Abstract

Context. Dense molecular filaments are widely believed to be representative of the initial conditions of star formation in interstellar clouds. Characterizing their physical properties, such as their transverse size, is therefore of paramount importance. Herschel studies suggest that nearby (d <  500 pc) molecular filaments have a typical half-power width of ∼0.1 pc, but this finding has been questioned recently on the ground that the measured widths tend to increase with distance to the filaments. Aims. Here we revisit the dependence of measured filament widths on distance or, equivalently, spatial resolution in an effort to determine whether nearby molecular filaments have a characteristic half-power width or whether this is an artifact of the finite resolution of the Herschel data. Methods. We perform a convergence test on the well-documented B211/213 filament in Taurus by degrading the resolution of the Herschel data several times and reestimating the filament width from the resulting column density profiles. We also compare the widths measured for the Taurus filament and other filaments from the Herschel Gould Belt Survey to those found for synthetic filaments with various types of simple, idealized column density profiles (Gaussian, power law, and Plummer-like). Results. We find that the measured filament widths do increase slightly as the spatial resolution worsens and/or the distance to the filaments increases. However, this trend is entirely consistent with what is expected from simple beam convolution for filaments with density profiles that are Plummer-like and have intrinsic half-power diameters of ∼0.08–0.1 pc and logarithmic slopes 1.5 <  p <  2.5 at large radii, as directly observed in many cases, including for the Taurus filament. Due to the presence of background noise fluctuations, deconvolution of the measured widths from the telescope beam is difficult and quickly becomes inaccurate. Conclusions. We conclude that the typical half-power filament width of ∼0.1 pc measured with Herschel in nearby clouds most likely reflects the presence of a true common scale in the filamentary structure of the cold interstellar medium, at least in the solar neighborhood. We suggest that this common scale may correspond to the magnetized turbulent correlation length in molecular clouds.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3