Abstract
Abstract
The emergence of orbital resonances among planets is a natural consequence of the early dynamical evolution of planetary systems. While it is well established that convergent migration is necessary for mean-motion commensurabilities to emerge, recent numerical experiments have shown that the existing adiabatic theory of resonant capture provides an incomplete description of the relevant physics, leading to an erroneous mass scaling in the regime of strong dissipation. In this work, we develop a new model for resonance capture that self-consistently accounts for migration and circularization of planetary orbits, and derive an analytic criterion based upon stability analysis that describes the conditions necessary for the formation of mean-motion resonances. We subsequently test our results against numerical simulations and find satisfactory agreement. Our results elucidate the critical role played by adiabaticity and resonant stability in shaping the orbital architectures of planetary systems during the nebular epoch, and provide a valuable tool for understanding their primordial dynamical evolution.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献