If Dark Matter is Fuzzy, the First Stars Form in Massive Pancakes

Author:

Kulkarni MihirORCID,Visbal EliORCID,Bryan Greg L.ORCID,Li XinyuORCID

Abstract

Abstract Fuzzy dark matter (FDM) is a proposed modification for the standard cold dark matter (CDM) model motivated by small-scale discrepancies in low-mass galaxies. Composed of ultralight (mass ∼ 1022 eV) axions with kiloparsec-scale de Broglie wavelengths, this is one of a class of candidates that predicts that the first collapsed objects form in relatively massive dark matter halos. This implies that the formation history of the first stars and galaxies would be very different, potentially placing strong constraints on such models. Here we numerically simulate the formation of the first stars in an FDM cosmology, following the collapse in a representative volume all the way down to primordial protostar formation including a primordial nonequilibrium chemical network and cooling for the first time. We find two novel results: first, the large-scale collapse results in a very thin and flat gas “pancake”; second, despite the very different cosmology, this pancake fragments until it forms protostellar objects indistinguishable from those in CDM. Combined, these results indicate that the first generation of stars in this model are also likely to be massive and, because of the sheet morphology, do not self-regulate, resulting in a massive Population III starburst. We estimate the total number of first stars forming in this extended structure to be 104 over 20 Myr using a simple model to account for the ionizing feedback from the stars, and should be observable with the James Webb Space Telescope. These predictions provide a potential smoking gun signature of FDM and similar dark matter candidates.

Funder

National Science Foundation

National Aeronautics and Space Administration

Gouvernement du Canada ∣ Natural Sciences and Engineering Research Council of Canada

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3