Galactic disc heating by density granulation in fuzzy dark matter simulations

Author:

Yang Hsun-Yeong1,Chiang Barry T123ORCID,Su Guan-Ming1,Schive Hsi-YuORCID,Chiueh Tzihong,Ostriker Jeremiah P34

Affiliation:

1. Institute of Astrophysics, National Taiwan University , Taipei 10617 , Taiwan

2. Department of Astronomy, Yale University , New Haven, CT 06511 , USA

3. Department of Astronomy, Columbia University , New York, NY 10027 , USA

4. Department of Astrophysical Sciences, Princeton University , 4 Ivy Lane, Princeton, NJ 08544 , USA

Abstract

ABSTRACT Fuzzy dark matter (FDM), an attractive dark matter candidate comprising ultralight bosons (axions) with a particle mass ma ∼ 10−22 eV, is motivated by the small-scale challenges of cold dark matter and features a kpc-size de Broglie wavelength. Quantum wave interference inside an FDM halo gives rise to stochastically fluctuating density granulation; the resulting gravitational perturbations could drive significant disc thickening, providing a natural explanation for galactic thick discs. Here we present the first self-consistent simulations of FDM haloes and stellar discs, exploring ma = 0.2–1.2 × 10−22 eV and halo masses Mh = 0.7–2.8 × 1011 M⊙. Disc thickening is observed in all simulated systems. The disc heating rates are approximately constant in time and increase substantially with decreasing ma, reaching dh/dt ≃ 0.04 (0.4) kpc Gyr−1 and ${\rm d}\sigma _z^2/{\rm d}t \simeq 4$ (150) km2 s−2 Gyr−1 for ma = 1.2 (0.2) × 10−22 eV and $M_{\rm h}=7\times 10^{10} \, \rm {M}_{\odot }$, where h is the disc scale height and σz is the vertical velocity dispersion. These simulated heating rates agree within a factor of two with the theoretical estimates of Chiang et al., confirming that the rough estimate of Church et al. overpredicts the granulation-driven disc heating rate by two orders of magnitude. However, the simulation-inferred heating rates scale less steeply than the theoretically predicted relation ${\rm d}\sigma ^2_z/{\rm d}t \propto m_a^{-3}$. Finally, we examine the applicability of the Fokker–Planck approximation in FDM granulation modelling and the robustness of the ma exclusion bound derived from the Galactic disc kinematics.

Funder

National Science and Technology Council

NTU

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3