The Formation of the First Star in the Universe

Author:

Abel Tom12,Bryan Greg L.3,Norman Michael L.4

Affiliation:

1. Harvard Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA.

2. Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK.

3. Astrophysics Division, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

4. Center for Astrophysics & Space Sciences, University of California, San Diego, La Jolla, CA 92093, USA.

Abstract

We describe results from a fully self-consistent three-dimensional hydrodynamical simulation of the formation of one of the first stars in the Universe. In current models of structure formation, dark matter initially dominates, and pregalactic objects form because of gravitational instability from small initial density perturbations. As they assemble via hierarchical merging, primordial gas cools through ro-vibrational lines of hydrogen molecules and sinks to the center of the dark matter potential well. The high-redshift analog of a molecular cloud is formed. As the dense, central parts of the cold gas cloud become self-gravitating, a dense core of ∼100 M (where M is the mass of the Sun) undergoes rapid contraction. At particle number densities greater than 10 9 per cubic centimeter, a 1 M protostellar core becomes fully molecular as a result of three-body H 2 formation. Contrary to analytical expectations, this process does not lead to renewed fragmentation and only one star is formed. The calculation is stopped when optical depth effects become important, leaving the final mass of the fully formed star somewhat uncertain. At this stage the protostar is accreting material very rapidly (∼10 −2 M year −1 ). Radiative feedback from the star will not only halt its growth but also inhibit the formation of other stars in the same pregalactic object (at least until the first star ends its life, presumably as a supernova). We conclude that at most one massive ( M ≫ 1 M ) metal-free star forms per pregalactic halo, consistent with recent abundance measurements of metal-poor galactic halo stars.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 1212 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3