Deep Generative Modeling of Periodic Variable Stars Using Physical Parameters

Author:

Martínez-Palomera JorgeORCID,Bloom Joshua S.ORCID,Abrahams Ellianna S.ORCID

Abstract

Abstract The ability to generate physically plausible ensembles of variable sources is critical to the optimization of time domain survey cadences and the training of classification models on data sets with few to no labels. Traditional data augmentation techniques expand training sets by reenvisioning observed exemplars, seeking to simulate observations of specific training sources under different (exogenous) conditions. Unlike fully theory-driven models, these approaches do not typically allow principled interpolation nor extrapolation. Moreover, the principal drawback of theory-driven models lies in the prohibitive computational cost of simulating source observables from ab initio parameters. In this work, we propose a computationally tractable machine learning approach to generate realistic light curves of periodic variables capable of integrating physical parameters and variability classes as inputs. Our deep generative model, inspired by the transparent latent space generative adversarial networks, uses a variational autoencoder (VAE) architecture with temporal convolutional network layers, trained using the OGLE-III optical light curves and physical characteristics (e.g., effective temperature and absolute magnitude) from Gaia DR2. A test using the temperature–shape relationship of RR Lyrae demonstrates the efficacy of our generative “physics-enhanced latent space VAE” (PELS-VAE) model. Such deep generative models, serving as nonlinear nonparametric emulators, present a novel tool for astronomers to create synthetic time series over arbitrary cadences.

Funder

NSF

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3