StellarGAN: Classifying Stellar Spectra with Generative Adversarial Networks in SDSS and APOGEE Sky Surveys

Author:

Liu Wei,Cao ShuoORCID,Yu Xian-Chuan,Zhu Meng,Biesiada MarekORCID,Yao Jiawen,Du Minghao

Abstract

Abstract Extracting precise stellar labels is crucial for large spectroscopic surveys like the Sloan Digital Sky Survey (SDSS) and APOGEE. In this paper, we report the newest implementation of StellarGAN, a data-driven method based on generative adversarial networks (GANs). Using 1D operators like convolution, the 2D GAN is modified into StellarGAN. This allows it to learn the relevant features of 1D stellar spectra without needing labels for specific stellar types. We test the performance of StellarGAN on different stellar spectra trained on SDSS and APOGEE data sets. Our result reveals that StellarGAN attains the highest overall F1-score on SDSS data sets (F1-score = 0.82, 0.77, 0.74, 0.53, 0.51, 0.61, and 0.55, for O-type, B-type, A-type, F-type, G-type, K-type, and M-type stars) when the signal-to-noise ratio (S/N) is low (90% of the spectra have an S/N < 50), with 1% of labeled spectra used for training. Using 50% of the labeled spectral data for training, StellarGAN consistently demonstrates performance that surpasses or is comparable to that of other data-driven models, as evidenced by the F1-scores of 0.92, 0.77, 0.77, 0.84, 0.84, 0.80, and 0.67. In the case of APOGEE (90% of the spectra have an S/N < 500), our method is also superior regarding its comprehensive performance (F1-score = 0.53, 0.60, 0.56, 0.56, and 0.78 for A-type, F-type, G-type, K-type, and M-type stars) with 1% of labeled spectra for training, manifesting its learning ability out of a limited number of labeled spectra. Our proposed method is also applicable to other types of data that need to be classified (such as gravitational-wave signals, light curves, etc.).

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3