Periodic Variable Star Classification with Deep Learning: Handling Data Imbalance in an Ensemble Augmentation Way

Author:

Kang ZihanORCID,Zhang Yanxia,Zhang Jingyi,Li Changhua,Kong Minzhi,Zhao Yongheng,Wu Xue-Bing

Abstract

Abstract Time-domain astronomy is progressing rapidly with the ongoing and upcoming large-scale photometric sky surveys led by the Vera C. Rubin Observatory project (LSST). Billions of variable sources call for better automatic classification algorithms for light curves. Among them, periodic variable stars are frequently studied. Different categories of periodic variable stars have a high degree of class imbalance and pose a challenge to algorithms including deep learning methods. We design two kinds of architectures of neural networks for the classification of periodic variable stars in the Catalina Survey’s Data Release 2: a multi-input recurrent neural network (RNN) and a compound network combing the RNN and the convolutional neural network (CNN). To deal with class imbalance, we apply Gaussian Process to generate synthetic light curves with artificial uncertainties for data augmentation. For better performance, we organize the augmentation and training process in a “bagging-like” ensemble learning scheme. The experimental results show that the better approach is the compound network combing RNN and CNN, which reaches the best result of 86.2% on the overall balanced accuracy and 0.75 on the macro F1 score. We develop the ensemble augmentation method to solve the data imbalance when classifying variable stars and prove the effectiveness of combining different representations of light curves in a single model. The proposed methods would help build better classification algorithms of periodic time series data for future sky surveys (e.g., LSST).

Funder

the China Manned Space Project

Natural Science Foundation of Hebei Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3