A Coronagraph with a Sub-λ/D Inner Working Angle and a Moderate Spectral Bandwidth

Author:

Itoh SatoshiORCID,Matsuo TaroORCID

Abstract

Abstract Future high-contrast imaging spectroscopy with a large segmented telescope will be able to detect atmospheric molecules of Earth-like planets around G- or K-type main-sequence stars. Increasing the number of target planets will require a coronagraph with a small inner working angle (IWA), and wide spectral bandwidth is required if we enhance a variety of detectable atmospheric molecules. To satisfy these requirements, in this paper, we present a coronagraphic system that provides an IWA less than 1λ 0/D over a moderate wavelength band, where λ 0 is the design-center wavelength and D denotes the full width of the rectangular aperture included in the telescope aperture. A performance simulation shows that the proposed system approximately achieves a contrast below 10−10 at 1λ 0/D over the wavelengths of 650–750 nm. In addition, this system has a core throughput ≥10% at input separation angles of ∼0.7–1.4λ 0/D; to reduce telescope time, we need prior information on the target’s orbit by other observational methods to a precision higher than the width of the field of view. For some types of aberration including tilt aberration, the proposed system has a sensitivity less than ever-proposed coronagraphs that have IWAs of approximately 1λ 0/D. In future observations of Earth-like planets, the proposed coronagraphic system may serve as a supplementary coronagraphic system dedicated to achieving an extremely small IWA.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wide-spectral-band Nuller Insensitive to Finite Stellar Angular Diameter with a One-dimensional Diffraction-limited Coronagraph;The Astronomical Journal;2024-04-24

2. Interferometric apodization by homothety – II. Experimental validation;Monthly Notices of the Royal Astronomical Society;2023-11-23

3. Interferometric apodization by homothety – I. Optimization of the device parameters;Monthly Notices of the Royal Astronomical Society;2023-06-15

4. Experimental Verification of a One-dimensional Diffraction-limit Coronagraph;Publications of the Astronomical Society of the Pacific;2023-06-01

5. Development progress of diffraction-limited coronagraphs with moderate spectral bandwidths;Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation V;2022-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3