Wide-spectral-band Nuller Insensitive to Finite Stellar Angular Diameter with a One-dimensional Diffraction-limited Coronagraph

Author:

Itoh SatoshiORCID,Matsuo Taro,Tamura MotohideORCID

Abstract

Abstract Potentially habitable planets around nearby stars less massive than solar-type stars could join targets of the spectroscopy of the planetary reflected light with future space telescopes. However, the orbits of most of these planets occur near the diffraction limit for 6 m diameter telescopes. Thus, while securing contrast-mitigation ability under a broad spectral bandwidth and a finite stellar angular diameter, we must maintain planetary throughput even at the diffraction-limited angles to be able to reduce the effect of the photon noise within a reasonable observation time. A one-dimensional diffraction-limited coronagraph (1DDLC) observes planets near the diffraction limit with undistorted point spread functions but has a finite-stellar diameter problem in wideband use. This study presents a method for wide-spectral-band nulling insensitive to stellar-angular-diameter by adding a fiber nulling with a Lyot-plane phase mask to the 1DDLC. Designing the pattern of the Lyot-plane mask function focuses on the parity of the amplitude spread function of light. Our numerical simulation shows that the planetary throughput (including the fiber-coupling efficiency) can reach about 11% for about 1.35-λ/D planetary separation almost independently of the spectral bandwidth. The simulation also shows the raw contrast of about 4 × 10−8 (the spectral bandwidth of 25%) and 5 × 10−10 (the spectral bandwidth of 10%) for 3 × 10−2 λ/D stellar angular diameter. The planetary throughput depends on the planetary azimuthal angle, which may degrade the exploration efficiency compared to an isotropic throughput but is partially offset the wide spectral band.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3