Experimental Verification of a One-dimensional Diffraction-limit Coronagraph

Author:

Itoh SatoshiORCID,Matsuo Taro,Ota Shunsuke,Hara Kensuke,Ikeda Yuji,Kojima Reiki,Yamada Toru,Sumi Takahiro

Abstract

Abstract We performed an experimental verification of a coronagraph. As a result, we confirmed that, at the focal region where the planetary point spread function exists, the coronagraph system mitigates the raw contrast of a star-planet system by at least 1 × 10−5 even for the 1-λ/D star-planet separation. In addition, the verified coronagraph keeps the shapes of the off-axis point spread functions when the setup has the source angular separation of 1λ/D. The low-order wave front error and the non-zero extinction ratio of the linear polarizer may affect the currently confirmed contrast. The sharpness of the off-axis point spread function generated by the sub-λ/D separated sources is promising for the fiber-based observation of exoplanets. The coupling efficiency with a single mode fiber exceeds 50% when the angular separation is greater than 3–4×10−1 λ/D. For sub-λ/D separated sources, the peak positions (obtained with Gaussian fitting) of the output point spread functions are different from the angular positions of sources; the peak position moved from about 0.8λ/D to 1.0λ/D as the angular separation of the light source varies from 0.1λ/D to 1.0λ/D. The off-axis throughput including the fiber-coupling efficiency (with respect to no focal plane mask) is about 40% for 1-λ/D separated sources and 10% for 0.5-λ/D separated ones (excluding the factor of the ratio of pupil aperture width and Lyot stop width), where we assumed a linear-polarized-light injection. In addition, because this coronagraph can remove point sources on a line in the sky, it has another promising application for high-contrast imaging of exoplanets in binary systems.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3