3D Orbital Architecture of a Dwarf Binary System and Its Planetary Companion

Author:

Curiel SalvadorORCID,Ortiz-León Gisela N.ORCID,Mioduszewski Amy J.ORCID,Sanchez-Bermudez JoelORCID

Abstract

Abstract Because of the diversity of stellar masses and orbital sizes of binary systems and the complex interaction between star–star, star–planet, and planet–planet, it has been difficult to fully characterize the planetary systems associated with binary systems. Here, we report high-precision astrometric observations of the low-mass binary system GJ 896AB, revealing the presence of a Jupiter-like planetary companion (GJ 896Ab). The planetary companion is associated to the main star GJ 896A, with an estimated mass of 2.3 Jupiter masses and an orbit period of 284.4 days. A simultaneous analysis of the relative astrometric data obtained in the optical and infrared with several telescopes, and the absolute astrometric data obtained at radio wavelengths with the Very Long Baseline Array (VLBA), reveals, for the first time, the fully characterized three-dimensional (3D) orbital plane orientation of the binary system and the planetary companion. The planetary and binary orbits are found to be in a retrograde configuration and with a large mutual inclination angle (Φ = 148°) between both orbital planes. Characterizing the 3D orbital architecture of binary systems with planets is important in the context of planet formation, as it could reveal whether the systems were formed by disk fragmentation or turbulence fragmentation, as well as the origin of spin–orbit misalignment. Furthermore, as most stars are in binary or multiple systems, our understanding of systems such as this one will help to further understand the phenomenon of planetary formation in general.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3