Precise Mass, Orbital Motion, and Stellar Properties of the M-dwarf Binary LP 349−25AB

Author:

Curiel SalvadorORCID,Ortiz-León Gisela N.ORCID,Mioduszewski Amy J.ORCID,Arenas-Martinez Anthony B.

Abstract

Abstract LP 349−25 is a well-studied close stellar binary system comprised of two late M dwarf stars, where both stars are close to the limit between star and brown dwarf. This system was previously identified as a source of gigahertz radio emission. We observed LP 349−25AB over 11 epochs in 2020–2022, detecting both components in this nearby binary system using the Very Long Baseline Array (VLBA). We fit simultaneously the VLBA absolute astrometric positions together with existing relative astrometric observations derived from optical/infrared observations with a set of algorithms that use nonlinear least-squares, genetic algorithm, and Markov Chain Monte Carlo methods to determine the orbital parameters of the two components. We find the masses of the primary and secondary components to be 0.08188 ± 0.00061 M and 0.06411 ± 0.00049 M , respectively, representing one of the most precise mass estimates of any ultracool dwarf (UCD) to date. The primary is a UCD of 85.71 ± 0.64 M Jup, while the secondary has a mass consistent with being a brown dwarf of 67.11 ± 0.51 M Jup. This is one of the very few direct detections of a brown dwarf with VLBA observations. We also find a distance to the binary system of 14.122 ± 0.057 pc. Using stellar evolutionary models, we find the model-derived stellar parameters of both stars. In particular, we obtain a model-derived age of 262 Myr for the system, which indicates that LP 349−25AB is composed of two pre–main-sequence stars. In addition, we find that the secondary star is significantly less evolved than the primary star.

Funder

Consejo Nacional de Humanidades, Ciencias y Tecnologías

UNAM ∣ Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3