Hunting for exoplanets via magnetic star–planet interactions: geometrical considerations for radio emission

Author:

Kavanagh Robert D12ORCID,Vedantham Harish K13ORCID

Affiliation:

1. ASTRON, The Netherlands Institute for Radio Astronomy , Oude Hogeveensedijk 4, NL-7991PD Dwingeloo, the Netherlands

2. Leiden Observatory, Leiden University , PO Box 9513, NL-2300 RA Leiden, the Netherlands

3. Kapteyn Astronomical Institute, University of Groningen , Landleven 12, NL-9747AD Groningen, the Netherlands

Abstract

ABSTRACT Recent low-frequency radio observations suggest that some nearby M dwarfs could be interacting magnetically with undetected close-in planets, powering the emission via the electron cyclotron maser (ECM) instability. Confirmation of such a scenario could reveal the presence of close-in planets around M dwarfs, which are typically difficult to detect via other methods. ECM emission is beamed, and is generally only visible for brief windows depending on the underlying system geometry. Due to this, detection may be favoured at certain orbital phases, or from systems with specific geometric configurations. In this work, we develop a geometric model to explore these two ideas. Our model produces the visibility of the induced emission as a function of time, based on a set of key parameters that characterize magnetic star–planet interactions. Utilizing our model, we find that the orbital phases where emission appears are highly dependent on the underlying parameters, and does not generally appear at the quadrature points in the orbit as is seen for the Jupiter–Io interaction. Then using non-informative priors on the system geometry, we show that untargeted radio surveys are biased towards detecting emission from systems with planets in near face-on orbits. While transiting exoplanets are still likely to be detectable, they are less likely to be seen than those in near face-on orbits. Our forward model serves to be a powerful tool for both interpreting and appropriately scheduling radio observations of exoplanetary systems, as well as inverting the system geometry from observations.

Funder

Dutch Research Council

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3