Phenomenology and periodicity of radio emission from the stellar system AU Microscopii

Author:

Bloot S.,Callingham J. R.,Vedantham H. K.,Kavanagh R. D.,Pope B. J. S.,Climent J. B.,Guirado J. C.,Peña-Moñino L.,Pérez-Torres M.

Abstract

Stellar radio emission can measure a star's magnetic field strength and structure, plasma density, and dynamics, and the stellar wind pressure impinging on exoplanet atmospheres. However, properly interpreting the radio data often requires temporal baselines that cover the rotation of the stars, orbits of their planets, and any longer-term stellar activity cycles. Here we present our monitoring campaign on the young, active M\,dwarf AU\,Microscopii with the Australia Telescope Compact Array between 1.1 and 3.1\,GHz. With over 250 hours of observations, these data represent the longest radio monitoring campaign on a single main-sequence star to date. We find that AU\,Mic produces a wide variety of radio emission, for which we introduce a phenomenological classification scheme predicated on the polarisation fraction and time-frequency structure of the emission. Such a classification scheme is applicable to radio emission from other radio-bright stars. The six types of radio emission detected on AU\,Mic can be broadly categorised into five distinct types of bursts, and broadband quiescent emission. We find that the radio bursts are highly circularly polarised and periodic with the rotation period of the star, implying that the emission is beamed. It is therefore most likely produced by the electron cyclotron maser instability. We present a model to show that the observed pattern of emission can be explained by emission from auroral rings on the magnetic poles. The total intensity of the broadband emission is stochastic, but we show that its circular polarisation fraction is also periodic with the rotation of the star. Such a periodicity in the polarised fraction of emission has not been observed on an M\,dwarf before. We present a qualitative model to describe the periodicity in the polarisation fraction of the broadband emission, using low-harmonic gyromagnetic emission. Using a simple qualitative model, we infer a magnetic obliquity of at least 20 from the observed variation in polarisation fraction. Finally, we show that the radio emission might be evolving on long timescales, hinting at a potential stellar magnetic activity cycle.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Generalitat Valenciana

Ministerio de Ciencia e Innovación

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3