Kepler-102: Masses and Compositions for a Super-Earth and Sub-Neptune Orbiting an Active Star

Author:

Brinkman Casey L.ORCID,Cadman JamesORCID,Weiss LaurenORCID,Gaidos EricORCID,Rice KenORCID,Huber DanielORCID,Claytor Zachary R.ORCID,Bonomo Aldo S.ORCID,Buchhave Lars A.ORCID,Cameron Andrew CollierORCID,Cosentino RosarioORCID,Dumusque XavierORCID,Martinez Fiorenzano Aldo F.ORCID,Ghedina AdrianoORCID,Harutyunyan Avet,Howard AndrewORCID,Isaacson HowardORCID,Latham David W.ORCID,López-Morales MercedesORCID,Malavolta LucaORCID,Micela GiuseppinaORCID,Molinari EmilioORCID,Pepe Francesco,Philips David F.,Poretti EnnioORCID,Sozzetti AlessandroORCID,Udry StéphaneORCID

Abstract

Abstract Radial velocity (RV) measurements of transiting multiplanet systems allow us to understand the densities and compositions of planets unlike those in the solar system. Kepler-102, which consists of five tightly packed transiting planets, is a particularly interesting system since it includes a super-Earth (Kepler-102d) and a sub-Neptune-sized planet (Kepler-102e) for which masses can be measured using RVs. Previous work found a high density for Kepler-102d, suggesting a composition similar to that of Mercury, while Kepler-102e was found to have a density typical of sub-Neptune size planets; however, Kepler-102 is an active star, which can interfere with RV mass measurements. To better measure the mass of these two planets, we obtained 111 new RVs using Keck/HIRES and Telescopio Nazionale Galileo/HARPS-N and modeled Kepler-102's activity using quasiperiodic Gaussian process regression. For Kepler-102d, we report a mass upper limit M d < 5.3 M (95% confidence), a best-fit mass M d = 2.5 ± 1.4 M , and a density ρ d = 5.6 ± 3.2 g cm−3, which is consistent with a rocky composition similar in density to the Earth. For Kepler-102e we report a mass M e = 4.7 ± 1.7 M and a density ρ e = 1.8 ± 0.7 g cm−3. These measurements suggest that Kepler-102e has a rocky core with a thick gaseous envelope comprising 2%–4% of the planet mass and 16%–50% of its radius. Our study is yet another demonstration that accounting for stellar activity in stars with clear rotation signals can yield more accurate planet masses, enabling a more realistic interpretation of planet interiors.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3