Cold Jupiters and improved masses in 38 Kepler and K2 small planet systems from 3661 HARPS-N radial velocities

Author:

Bonomo A. S.ORCID,Dumusque X.,Massa A.,Mortier A.ORCID,Bongiolatti R.,Malavolta L.,Sozzetti A.ORCID,Buchhave L. A.ORCID,Damasso M.ORCID,Haywood R. D.,Morbidelli A.,Latham D. W.ORCID,Molinari E.ORCID,Pepe F.ORCID,Poretti E.ORCID,Udry S.,Affer L.ORCID,Boschin W.ORCID,Charbonneau D.,Cosentino R.,Cretignier M.,Ghedina A.,Lega E.ORCID,López-Morales M.ORCID,Margini M.ORCID,Martínez Fiorenzano A. F.,Mayor M.,Micela G.,Pedani M.,Pinamonti M.ORCID,Rice K.ORCID,Sasselov D.ORCID,Tronsgaard R.,Vanderburg A.ORCID

Abstract

The exoplanet population characterized by relatively short orbital periods (P < 100 d) around solar-type stars is dominated by super-Earths and sub-Neptunes. However, these planets are missing in our Solar System and the reason behind this absence is still unknown. Two theoretical scenarios invoke the role of Jupiter as the possible culprit: Jupiter may have acted as a dynamical barrier to the inward migration of sub-Neptunes from beyond the water iceline; alternatively, Jupiter may have considerably reduced the inward flux of material (pebbles) required to form super-Earths inside that iceline. Both scenarios predict an anti-correlation between the presence of small planets and that of cold Jupiters in exoplanetary systems. To test that prediction, we homogeneously analyzed the radial-velocity measurements of 38 Kepler and K2 transiting small planet systems gathered over nearly ten years with the HARPS-N spectrograph, as well as publicly available radial velocities collected with other facilities. We used Bayesian differential evolution Markov chain Monte Carlo techniques, which in some cases were coupled with Gaussian process regression to model non-stationary variations due to stellar magnetic activity phenomena. We detected five cold Jupiters in three systems: two in Kepler-68, two in Kepler-454, and a very eccentric one in K2-312. We also found linear trends caused by bound companions in Kepler-93, Kepler-454, and K2-12, with slopes that are still compatible with a planetary mass for outer bodies in the Kepler-454 and K2-12 systems. By using binomial statistics and accounting for the survey completeness, we derived an occurrence rate of 9.3−2.9+7.7% for cold Jupiters with 0.3–13 MJup and 1–10 AU, which is lower but still compatible at 1.3σ with the value measured from radial-velocity surveys for solar-type stars, regardless of the presence or absence of small planets. The sample is not large enough to draw a firm conclusion about the predicted anti-correlation between small planets and cold Jupiters; nevertheless, we found no evidence of previous claims of an excess of cold Jupiters in small planet systems. As an important byproduct of our analyses, we homogeneously determined the masses of 64 Kepler and K2 small planets, reaching a precision better than 5, 7.5, and 10σ for 25, 13, and 8 planets, respectively. Finally, we release the 3661 HARPS-N radial velocities used in this work to the scientific community. These radial-velocity measurements mainly benefit from an improved data reduction software that corrects for subtle prior systematic effects.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3