The 𝒯ℛ𝒪𝒴 project

Author:

Balsalobre-Ruza O.ORCID,Lillo-Box J.ORCID,Barrado D.ORCID,Correia A. C. M.ORCID,Faria J. P.ORCID,Figueira P.ORCID,Leleu A.,Robutel P.,Santos N.ORCID,Herrero-Cisneros E.ORCID

Abstract

Context. Co-orbital objects, also known as trojans, are frequently found in simulations of planetary system formation. In these configurations, a planet shares its orbit with other massive bodies. It is still unclear why there have not been any co-orbitals discovered thus far in exoplanetary systems (exotrojans) or even pairs of planets found in such a 1:1 mean motion resonance. Reconciling observations and theory is an open subject in the field. Aims. The main objective of the 𝒯ℛ𝒪𝒴 project is to conduct an exhaustive search for exotrojans using diverse observational techniques. In this work, we analyze the radial velocity time series informed by transits, focusing the search around low-mass stars. Methods. We employed the α-test method on confirmed planets searching for shifts between spectral and photometric mid-transit times. This technique is sensitive to mass imbalances within the planetary orbit, allowing us to identify non-negligible co-orbital masses. Results. Among the 95 transiting planets examined, we find one robust exotrojan candidate with a significant 3-σ detection. Additionally, 25 exoplanets show compatibility with the presence of exotrojan companions at a 1-σ level, requiring further observations to better constrain their presence. For two of those weak candidates, we find dimmings in their light curves within the predicted Lagrangian region. We established upper limits on the co-orbital masses for either the candidates and null detections. Conclusions. Our analysis reveals that current high-resolution spectrographs effectively rule out co-orbitals more massive than Saturn around low-mass stars. This work points out to dozens of targets that have the potential to better constraint their exotrojan upper mass limit with dedicated radial velocity observations. We also explored the potential of observing the secondary eclipses of the confirmed exoplanets in our sample to enhance the exotrojan search, ultimately leading to a more accurate estimation of the occurrence rate of exotrojans.

Funder

Swiss National Centre of Competence Research Planets

Ministerio de Ciencia e Innovación

European Union

Fundação para a Ciência e a Tecnologia

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3