Three young planets around the K-dwarf K2-198: high-energy environment, evaporation history, and expected future

Author:

Ketzer L12ORCID,Poppenhaeger K12ORCID,Baratella M1,Ilin E1ORCID

Affiliation:

1. Leibniz Institute for Astrophysics Potsdam (AIP) , An der Sternwarte 16, D-14482 Potsdam , Germany

2. Institut für Physik und Astronomie, Universität Potsdam , Karl-Liebknecht-Straße 24/25, D-14476 Potsdam , Germany

Abstract

ABSTRACT Planets orbiting young stars are thought to experience atmospheric evaporation as a result of the host stars’ high-magnetic activity. We study the evaporation history and expected future of the three known transiting exoplanets in the young multiplanet system K2-198. Based on spectroscopic and photometric measurements, we estimate an age of the K-dwarf host star between 200 and 500 Myr, and calculate the high-energy environment of these planets using eROSITA X-ray measurements. We find that the innermost planet K2-198c has likely lost its primordial envelope within the first few 10s of Myr regardless of the age at which the star drops out of the saturated X-ray regime. For the two outer planets, a range of initial envelope mass fractions is possible, depending on the not-yet-measured planetary mass and the stars’ spin-down history. Regarding the future of the system, we find that the outermost planet K2-198b is stable against photoevaporation for a wide range of planetary masses, while the middle planet K2-198d is only able to retain an atmosphere for a mass range between ∼7 and 18 M⊕. Lower mass planets are too susceptible to mass-loss, and a very thin present-day envelope for higher mass planets is easily lost with the estimated mass-loss rates. Our results support the idea that all three planets started out above the radius valley in the (sub-)Neptune regime and were then transformed into their current states by atmospheric evaporation, but also stress the importance of measuring planetary masses for (young) multiplanet systems before conducting more detailed photoevaporation simulations.

Funder

Leibniz-Gemeinschaft

California Institute of Technology

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3