ExoplANETS-A: A virtual observatory database for host stars and planetary systems

Author:

Morales-Calderón M.ORCID,Joyce S. R. G.ORCID,Pye J. P.ORCID,Barrado D.ORCID,García Castro M.,Rodrigo C.,Solano E.ORCID,Nichols J. D.ORCID,Lagage P. O.,Castro-González A.ORCID,García R. A.ORCID,Guedel M.ORCID,Huélamo N.ORCID,Metodieva Y.,Waters R.ORCID

Abstract

Context. ExoplANETS-A is an EU Horizon-2020 project with the primary objective of establishing new knowledge on exoplanet atmospheres. Intimately related to this topic is the study of the host stars’ radiative properties in order to understand the environment in which exoplanets lie. Aims. The aim of this work is to exploit archived data from space-based observatories and other public sources to produce uniform sets of stellar data that can establish new insight into the influence of the host star on the planetary atmosphere. We have compiled X-ray and UV luminosities, which affect the formation and the atmospheric properties of the planets, and stellar parameters, which impact the retrieval process of the planetary atmosphere’s properties and its errors. Methods. Our sample is formed of all transiting-exoplanet systems observed by HST or Spitzer. It includes 205 exoplanets and their 114 host stars. We have built a catalogue with information extracted from public, online archives augmented by quantities derived by the Exoplanets-A work. With this catalogue we have implemented an online database that also includes X-ray and OHP spectra and TESS light curves. In addition, we have developed a tool, exoVOSA, that is able to fit the spectral energy distribution of exoplanets. Results. We give an example of using the database to study the effects of the host star high energy emission on the exoplanet atmosphere. The sample has a planet radius valley that is located at 1.8 R, in agreement with previous studies. Multiplanet systems in our sample were used to test the photoevaporation model and we find that out of 14 systems, only one significant case poses a contradiction to it (K2-3). In this case, the inner planet of the system is above the radius gap while the two exterior planets are both below it. This indicates that some factor not included in the photoevaporation model has increased the mass-loss timescale of the inner planet. In summary, the exoplanet and stellar resources compiled and generated by ExoplANETS-A form a sound basis for current JWST observations and for future work in the era of Ariel.

Funder

Horizon 2020 Framework Programme

Agencia Estatal de Investigación

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3