On the Effect of Stellar Activity on Low-resolution Transit Spectroscopy and the use of High Resolution as Mitigation

Author:

Genest FrédéricORCID,Lafrenière DavidORCID,Boucher AnneORCID,Darveau-Bernier AntoineORCID,Doyon RenéORCID,Artigau ÉtienneORCID,Cook NeilORCID

Abstract

Abstract We present models designed to quantify the effects of stellar activity on exoplanet transit spectroscopy and atmospheric characterization at low (R = 100) and high (R = 100,000) spectral resolution. We study three model classes mirroring planetary system archetypes: a hot Jupiter around an early-K star (HD 189733 b); a mini-Neptune around an early-M dwarf (K2-18 b); and terrestrial planets around a late-M dwarf (TRAPPIST-1). We map photospheres with temperatures and radial velocities (RV) and integrate specific intensity stellar models. We obtain transit spectra affected by stellar contamination, the Rossiter–McLaughlin effect (RME), and center-to-limb variations (CLV). We find that, at low resolution, for later-type stars, planetary water features become difficult to distinguish from contamination. Many distributions of unocculted active regions can induce planetary-like features of similar amplitudes in the case of a late-M dwarf. Atmospheric characterization of planets around late-type stars will likely continue to suffer from degeneracy with stellar activity unless active regions' parameters can be constrained using additional information. For the early-K star, stellar contamination mostly manifests itself through a slope at optical wavelengths similar to Rayleigh scattering. In all cases, contamination induces offsets in measured planet radii. At high resolution, we show that we can determine the origin of H2O and CO detection signals and lift the degeneracy observed at low resolution, provided sufficient planet RV variation during transit and adequate correction for the RME and CLV when required. High-resolution spectroscopy may therefore help resolve issues arising from stellar contamination for favorable systems.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3